Author Affiliations
Abstract
1 AWE Aldermaston, Reading, UK
2 Oxford Centre for High Energy Density Science, Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
3 Centre for Intertial Fusion Studies, Blackett Laboratory, Imperial College London, London, UK
4 Formerly of Electrox, Letchworth, UK
5 Formerly of Central Laser Facility, Rutherford Laboratory, Didcot, UK
6 Formerly of Ferranti Defence Systems, Lincoln, UK
7 Leonardo, Edinburgh, UK
8 Retired, AWE, Reading, UK
9 Formerly of AWE, Reading, UK
10 Formerly of Laser Lines Ltd, Banbury, UK
11 Formerly of Optilas Ltd, Milton Keynes, UK
12 Retired, Pro-Lite Technology, Cranfield, UK
13 Specialised Imaging Ltd, Pitstone, UK
14 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
15 Magna-Power Electronics Ltd, Reading, UK
16 DeBe Lasers, Needham Laser Technologies, Whitchurch, UK
17 Blackett Laboratory, Imperial College London, London, UK
18 SPIE Europe, Cardiff, UK
19 Professor Emeritus (Physics), University of Hull, Kingston upon Hull, UK
20 Kentech Instruments Ltd, Wallingford, UK
21 Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
22 Professor Emeritus, Department of Physics, University of Strathclyde, Glasgow, UK
23 Department of Physics, Durham University, Durham, UK
24 Professor Emeritus (Photonics), Heriot-Watt University, Edinburgh, UK
25 Professor Emeritus, University of Southampton, Southampton, UK
26 Optical Surfaces Ltd, Kenley, UK
27 JEH Lasers Ltd, Rugby, UK
28 Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow, UK
29 ITER Organization, Saint-Paul-lez-Durance, France
30 Manx Precision Optics Ltd, Ballasalla, UK
31 Laser Lines Ltd, Banbury, UK
32 Elliot Scientific Ltd, MetroTest Scientific Group, Harpenden, UK
33 Centre for Plasma Physics, Queen’s University Belfast, Belfast, UK
34 Retired, Founder, and former MD, Rofin-Sinar UK Ltd, Hull, UK
35 Heraeus Noblelight Ltd, Cambridge, UK
36 Mirli Books, Chelmsford, UK
37 M Squared Lasers Ltd, Glasgow, UK
38 University of Hertfordshire, Hatfield, UK
39 E&EO UK Ltd, Barton-upon-Humber, UK
40 Department of Physics, University of York, York, UK
41 IC Optical Systems Ltd, Beckenham, UK
42 Laser Micromachining Ltd, St Asaph, UK
43 MBDA UK Ltd, Bristol, UK
44 Shanghai Jiao Tong University, Shanghai, China
45 Photek Ltd, St Leonards-on-Sea, UK
46 Island Optics Ltd, Ballasalla, UK
47 Retired, Lincoln, UK
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
high-power lasers history United Kingdom 
High Power Laser Science and Engineering
2021, 9(2): 02000e18
Author Affiliations
Abstract
1 ENEA, Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, 00044Frascati, Italy
2 CELIA, University of Bordeaux, CNRS, CEA, 33405Talence, France
3 CEA, DAM, CESTA, 33116Le Barp, France
4 Department of Physics, York Plasma Institute, University of York, Heslington, YorkYO10 5DD, UK
5 Central Laser Facility, Rutherford Appleton Laboratory, STFC, UKRI, Chilton, Didcot, OxfordshireOX11 0QX, UK
6 Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27 Prague 6, Czech Republic
7 Helmholtz-Zentrum Dresden-Rossendorf, Institut für Strahlenphysik, 01328Dresden, Germany
8 AWE plc, Aldermaston, Reading, BerkshireRG7 4PR, UK
9 Centro de Laseres Pulsados (CLPU), 37185Villamayor, Salamanca, Spain
10 CELIA, University of Bordeaux, CNRS, CEA, 33405Talence, France
11 AWE plc, Aldermaston, Reading, BerkshireRG7 4PR, UK
12 ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 25241Dolní B?e?any, Czech Republic
13 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
14 Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21Prague, Czech Republic
15 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
16 Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, GlasgowG4 0NG, UK
17 Laboratory PIIM, University Aix-Marseille-CNRS, 13397Marseille, France
18 Institute of Plasma Physics and Laser Microfusion, 01-497Warsaw, Poland
19 The Blackett Laboratory, Imperial College London, LondonSW7 2AZ, UK
20 PHELIX Group, GSI Helmholtzzentrum für Schwerionenforschung, D-64291Darmstadt, Germany
21 Central Laser Facility, Rutherford Appleton Laboratory, STFC, UKRI, Chilton, Didcot, OxfordshireOX11 0QX, UK
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications.
electromagnetic pulses high-power lasers diagnostics mitigation techniques 
High Power Laser Science and Engineering
2020, 8(2): 02000e22
Author Affiliations
Abstract
1 ELI Beamlines, Institute of Physics, 5. května 835, 252 41 Dolní B?e?any, Czech Republic
2 Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ul’yanov Street, 603950 Nizhny Novgorod, Russia
3 LULI—CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
4 UPMC Univ Paris 06: Sorbonne Universities, F-91128 Palaiseau Cedex, France
5 Research Center Toptec, Institute of Plasma Physics, Sobotecká 1660, 511 01 Turnov, Czech Republic
6 Joint Institute for High Temperatures Russian Academy of Science (JIHT RAS), Moscow 125412, Russia
7 Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
8 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
9 Department of Physics SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
10 European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
The design of ellipsoidal plasma mirrors (EPMs) for the PEARL laser facility is presented. The EPMs achieve a magnification of 0.32 in focal spot size, and the corresponding increase in focused intensity is expected to be about 8. Designing and implementing such focusing optics for short-pulse (<100 fs) systems paves the way for their use in future high-power facilities, where they can be used to achieve intensities beyond 1023 W/cm2. A retro-imaging-based target alignment system is also described, which is used to align solid targets at the output of the ellispoidal mirrors (with a numerical aperture of 0.75 in this case).
Matter and Radiation at Extremes
2019, 4(2): 024402
Author Affiliations
Abstract
1 AWE, Aldermaston, Reading, UK
2 OxCHEDS, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
3 CIFS, Blackett Laboratory, Imperial College, London, UK
4 NIF & Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, USA
5 Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
6 Chair for Laser Technology LLT, RWTH Aachen University, Aachen, Germany
7 University of Rochester, Laboratory for Laser Energetics, Rochester, USA
8 Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, UK
9 LULI, CNRS, CEA, Sorbonne Universités, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
10 Department of Physics, The Ohio State University, Columbus, USA
11 Centre for Ultrafast Optical Science, University of Michigan, Ann Arbor, USA
12 Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica (INO), CNR, Pisa, Italy
13 Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena and Helmholtz Institute, Jena, Germany
14 The Graduate School for the Creation of New Photonics Industries, Nishiku, Hamamatsu, Japan
15 Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
16 Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
17 ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
18 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
19 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
20 Institute for Applied Physics (IAP) at Friedrich-Schiller-University Jena, Jena, Germany
21 Helmholtz Institute Jena, Jena, Germany
22 Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena, Germany
23 Key Laboratory for Laser Plasma (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
24 Centre for Relativistic Laser Science (CoReLS), Institute for Basic Science, Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
25 SUPA, Department of Physics, University of Strathclyde, Glasgow, UK
26 Colorado State University, Fort Collins, Colorado, USA
27 Department of Experimental Physics, University of Szeged, Szeged, Hungary
28 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
In the 2015 review paper ‘Petawatt Class Lasers Worldwide’ a comprehensive overview of the current status of high-power facilities of ${>}200~\text{TW}$ was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multi-disciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.
exawatt lasers high-power lasers petawatt lasers ultra-high intensity 
High Power Laser Science and Engineering
2019, 7(3): 03000e54
Author Affiliations
Abstract
1 SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
2 Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK
3 Department of Physics, University of York, Heslington, York YO10 5DD, UK
4 Centro de L′aseres Pulsados (CLPU), M5 Parque Cient′?fico, 37185 Salamanca, Spain
5 Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, UK
The collective response of electrons in an ultrathin foil target irradiated by an ultraintense (6  1020 W cm??2) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture’, inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.
laser–plasmas interaction laser–plasmas interaction ultraintense ultraintense ultrashort pulse laser interaction with matters ultrashort pulse laser interaction with matters 
High Power Laser Science and Engineering
2016, 4(3): 03000e33
Author Affiliations
Abstract
1 AWE, Aldermaston, Reading RG7 4PR, UK
2 STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation (x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide. The definition of ‘petawatt class’ in this context is a laser that delivers >200 TW.
diode pumped high intensity high power lasers megajoule petawatt lasers 
High Power Laser Science and Engineering
2015, 3(1): 010000e3
Author Affiliations
Abstract
1 Centre for Inertial Fusion Studies (CIFS), Imperial College London, UK
2 AWE plc, Aldermaston, UK
3 Central Laser Facility, STFC Rutherford Appleton Laboratory, UK
There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility (CLF), STFC (Science and Technology Facilities Council) Rutherford Appleton Laboratory (RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of Astra-Gemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.
petawatt laser contrast wavefront correction plasma mirror 
High Power Laser Science and Engineering
2014, 2(4): 04000e34

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!